Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 186: 114557, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432439

RESUMO

Deoxynivalenol (DON) as a mycotoxin was commonly found in food and cereals which can affect immune function and inflammatory response. The majority of foods contain DON at levels below the official limit. This study aimed to evaluate the effects of non-cytotoxic concentration of DON on inflammation and its mechanisms using the IL-10 gene-silenced RAW264.7 cell model. The results showed that a non-cytotoxic concentration of DON at 25 ng/ml aggravated IL-10 knockdown-induced inflammation, which was manifested by increasing IL-1ß and TNF-α mRNA expression, migration and phagocytosis, decreasing IL-10 mRNA expression, and enhancing JAK2/STAT3 phosphorylation. Adding JAK2 inhibitor AG490 attenuated the aggravating effect of DON on IL-10 knockdown-induced inflammation. In conclusion, a non-cytotoxic concentration of DON enhances the inflammatory response through the JAK2/STAT3 signaling pathway when inflammation occurs in the body. These results indicated that non-cytotoxic concentrations of DON could aggravate inflammation when inflammation was induced by IL-10 knockdown, which increases vigilance against DON contamination at low concentration especially when an animal's body has inflammation.


Assuntos
Interleucina-10 , Transdução de Sinais , Camundongos , Animais , Interleucina-10/genética , Interleucina-10/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Células RAW 264.7 , Inflamação/metabolismo , RNA Mensageiro/genética
2.
J Agric Food Chem ; 71(39): 14365-14378, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37750412

RESUMO

The mycotoxin ochratoxin A (OTA) causes nephrotoxicity, hepatotoxicity, and immunotoxicity in animals and humans. The farnesoid X receptor (FXR) is a member of the NR family and is highly expressed in the kidney, which has an antilipid production function. Ferroptosis is an iron-dependent form of regulated cell death involved in several pathophysiological cell death and kidney injury. The present study aims to evaluate the role of FXR and ferroptosis in OTA-induced nephrotoxicity in mice and HK-2 cells. Results showed that OTA induced nephrotoxicity as demonstrated by inducing the histopathological lesions and neutrophil infiltration of the kidney, increasing serum BUN, CRE, and UA levels, increasing Ntn-1, Kim-1, and pro-inflammatory cytokine expression, and decreasing IL-10 expression and the cell viability of HK-2 cells. OTA treatment also induced FXR deficiency, ROS release, MDA level increase, GSH content decrease, and 4-HNE production in the kidney and HK-2 cells. OTA treatment induced ferroptosis as demonstrated by increasing labile iron pool and lipid peroxidation levels as well as Acsl4, TFR1, and HO-1 mRNA and protein levels, decreasing GPX4 and FTH mRNA and protein expressions, and inducing mitochondrial injury. The FXR activator (GW4064) rescued the accumulation of lipid peroxides, intracellular ROS, and Fe2+, inhibited ferroptosis, and alleviated OTA-induced nephrotoxicity. The ferroptosis inhibitor (Fer-1) prevented ferroptosis and attenuated nephrotoxicity. Collectively, this study elucidates that FXR played a critical role in OTA-induced nephrotoxicity via regulation of ferroptosis, which provides a novel strategy against OTA-induced nephrotoxicity.


Assuntos
Ferroptose , Humanos , Animais , Camundongos , Ferroptose/genética , Espécies Reativas de Oxigênio , Ferro , RNA Mensageiro
3.
J Agric Food Chem ; 71(9): 4144-4152, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847760

RESUMO

The etiology of inflammatory bowel diseases (IBDs) involves complex genetic and environmental factors such as mycotoxin contamination. Deoxynivalenol (DON), a well-known mycotoxin, contaminates food and feed and can induce intestinal injury and inflammatory response. The dose of DON in many foods is also below the limit, although the dose of DON exceeds the limit. The present study aims to evaluate the effects of the nontoxic dose of DON on colitis induced by dextran sodium sulfate (DSS) and the mechanism in mice. The results showed a nontoxic dose of DON at 50 µg/kg bw per day exacerbated DSS-induced colitis in mice as demonstrated by increased disease activity index, decreased colon length, increased morphological damage, decreased occludin and mucoprotein 2 expression, increased IL-1ß and TNF-α expression, and decreased IL-10 expression. DON at 50 µg/kg bw per day enhanced JAK2/STAT3 phosphorylation induced by DSS. Adding JAK2 inhibitor AG490 attenuated the aggravating effects of DON on DSS-induced colitis by reversing the morphological damage, occludin and mucoprotein 2 expression increased, IL-1ß and TNF-α expression increased, and IL-10 expression decreased. Taken together, a nontoxic dose of DON could aggravate DSS-induced colitis via the JAK2/STAT3 signaling pathway. This suggests that DON, below the standard limit dose, is also a risk for IBD and may be harmful to the health of humans and animals, which could provide the basis for establishing limits for DON.


Assuntos
Colite , Micotoxinas , Humanos , Animais , Camundongos , Interleucina-10 , Ocludina/genética , Fator de Necrose Tumoral alfa , Colite/induzido quimicamente , Colite/genética , Mucoproteínas , Janus Quinase 2/genética , Fator de Transcrição STAT3/genética
4.
Food Chem Toxicol ; 172: 113604, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623685

RESUMO

Ochratoxin A (OTA) is a potent mycotoxin found in foods and feeds, posing a health risk to animals and humans. Biological detoxification of OTA is considered a promising method, and some bacteria and fungi which can degrade OTA are isolated. However, research on safety and alleviating toxic effects are scarce. This study aims to isolate OTA-detoxification probiotics from natural samples and evaluate their safety and protective effects in mice. Here, a new OTA-detoxification strain named Pediococcus acidilactici NJB421 (P. acidilactici NJB421) was isolated from cow manure, which exhibited a removal rate of OTA at 48.53% for 48 h. P. acidilactici NJB421 exhibited high temperature resistance, acid tolerance, 0.3% bile salt and 1.4% trypsin resistance. The safety evaluation showed that P. acidilactici NJB421 at 2 × 108 CFU/per mouse had no abnormalities in body weight, organ indices, ALT, AST and ALP activities, BUN, CRE and TP contents. And P. acidilactici NJB421 alleviated the decreases in body weight, organ indices and small intestinal length, and alleviated intestinal injury, liver injury and kidney injury. These results suggest P. acidilactici NJB421 is safe and has protection against OTA poisoning, which provides a new OTA-detoxification strain for livestock and food industries.


Assuntos
Ocratoxinas , Pediococcus acidilactici , Animais , Camundongos , Peso Corporal , Ocratoxinas/toxicidade , Ocratoxinas/metabolismo , Pediococcus/metabolismo , Pediococcus acidilactici/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...